Die neueste Version des TWAICE-Simulationsmodells, Version 9, führt die ersten Schritte zu einer neuen Generation von Batteriesimulationsmodellen ein: Die physikalisch motivierten semi-empirischen Alterungsmodelle.

Die neueste Version des TWAICE-Simulationsmodells, Version 9, führt die ersten Schritte zu einer neuen Generation von Batteriesimulationsmodellen ein: Die physikalisch motivierten semi-empirischen Alterungsmodelle.
Die laufende globale Energiewende, die durch die doppelte Notwendigkeit von ökologischer Nachhaltigkeit und wirtschaftlicher Effizienz angetrieben wird, hat den Aufstieg von zwei wichtigen Bereichen katalysiert: Elektrofahrzeuge (EVs) und Energiespeichersysteme (ESS). Das Herzstück dieser innovativen Technologien ist ein wesentlicher Bestandteil - das Batteriesystem. Seine Leistung, Effizienz und Langlebigkeit haben einen erheblichen Einfluss auf die Gesamtfunktionalität und Rentabilität sowohl von Elektrofahrzeugen als auch von ESS.
In den letzten Jahren haben Wissenschaftler viel Zeit und Ressourcen investiert, um semi-empirische, physikalisch-chemische und datengesteuerte Simulationsmodelle zu optimieren. Alle diese Modelle weisen unterschiedliche Herausforderungen und Grenzen auf. Um diese Sackgasse zu überwinden, kombinieren Wissenschaftler und Ingenieure physikalisch-chemische und mechanische Degradationseffekte und integrieren sie in (halb-)empirische und datengesteuerte Ansätze. Wir nennen diese Kombination physikalisch-motivierte semi-empirische Alterungsmodelle.
Das Whitepaper behandelt folgende Themen:
In der ersten Sitzung der TWAICE & Camelot BESS Lifecycle Webinar Series teilen Experten der Camelot Energy Group und TWAICE ihre Erfahrungen aus realen Energiespeicherprojekten und helfen Ihnen dabei, die Entwicklung von BESS von Anfang an richtig anzugehen.
Webinar ansehen